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We present theoretical and simulation studies of the formation and dynamics of finite-amplitude localized
pulses �solitary waves� of an incompressible fluid in an elastic tube. Starting from a set of hydrodynamic
equations, we derive a Hamiltonian which represents the energy integral of our system. The energy integral is
analyzed to obtain explicit profiles of finite-amplitude solitary pulses. Also studied are the excitation and
dynamics of solitary pulses by using computer simulations. It is found that a train of solitary pulses can be
excited by the nonlinear self-steepening at shock fronts. The relevance of our investigation to blood solitary
waves in arteries is discussed.
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I. INTRODUCTION

Measurements of the amplitude and pressure of the blood
flow in the ascending aorta of a dog �1� �also in Ref. �2�� and
rabbits �3� have shown that the blood flow has a pulselike
form, suggesting that the dynamics of the blood flow in ar-
teries may be characterized as solitary waves which keep
their pulselike shape due to a balance between the dispersion
and nonlinearities of the wave. The blood is described as an
incompressible fluid which flows in a thin elastic tube. The
basic nonlinear model for the nonlinear propagation of an
inelastic fluid in an elastic tube were derived in the 1980s
�2,4,5�, where the existence of solitary waves was demon-
strated by means of solutions to a derived Korteweg–de
Vries �KdV� equation. The theory of the blood dynamics has
since been developed significantly in the small-amplitude
limit �7–11�, including interactions between blood solitary
waves �12�. Neglecting the dispersive �time derivative� term
in Eq. �3� below, simple-wave �monovariable� solutions of
the fully nonlinear system were derived for the case of a
spatially varying Young’s module, demonstrating the pulse
steepening and the formation of shocks �6�.

In this Brief Report, we analyze the nonlinear equations
describing the deformation of an elastic tube filled with a
nonelastic and nonviscous fluid, where the radial fluid ve-
locities are assumed to be small compared to axial
velocities—a scenario relevant for the blood flow in arteries.
First, we show that the nonlinear equations in a stationary
frame can be expressed in the form of an energy integral
�13,14�. The latter is analyzed to demonstrate the existence
and shape of large-amplitude solitary pulses, as well as their
dependence on the solitary-wave speed and the value of the
nonlinear elasticity coefficient. Second, we perform numeri-
cal simulations of the time-dependent nonlinear equations.
Our results reveal self-steepening and excitation of large-
amplitude solitary pulses.

II. THEORY AND SIMULATIONS

The physics of solitary pulses in an elastic tube is de-
scribed by a conservation of the fluid and a balance between
the inertia of the fluid and the pressure, which are mediated

by the elastic properties of the tube wall. For solitary pulses
with scale lengths much larger than the tube diameter, a one-
dimensional model can be used �12�, which neglects the de-
tailed three-dimensional dynamics of the fluid and only con-
siders the mean motion of the fluid along the tube axis. The
equations then reduce to a description of the mean fluid ve-
locity in the tube and the elastic perturbation of the tube
cross section, where the force is due to the pressure differ-
ence between the atmospheric pressure and the pressure in-
side the tube. The basic one-dimensional equations for de-
scribing the dynamics of localized pressure waves in an
elastic tube are �2� the continuity equation
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��Avz�
�z

= 0, �1�

where A is the cross-section area of the tube and vz is the
axial flow speed of the blood, together with the axial equa-
tion of motion of the fluid and the radial equation of motion
of the tube wall, respectively,
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where R=R0+r is the radius of the tube where R0 is the
unperturbed tube radius, P is the pressure inside the tube, Pe
is the �atmospheric� pressure outside the tube, � is the den-
sity, and H and h are the effective inertial thickness and the
thickness of the wall, respectively. The tangential stress of
the tube wall is represented by

�t = E
r

R0
�1 + a

r

R0
� , �4�

where E is Young’s module and a is a nonlinear coefficient
of elasticity. Using the conditions for the conservation of
mass of the wall, RH=R0H0 and Rh=R0h0, where R0, H0,
and h0 are the equilibrium values of R, H, and h, respec-
tively, and the approximate relation A=�R2���R0

2+2R0r�,
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the quantities r, H, and h can be eliminated from Eqs.
�1�–�4�. The latter can be cast into the dimensionless form as

�S

�t
+

��Su�
�x

= 0, �5�

�u

�t
+ u

�u

�x
= −

�p

�x
, �6�

and

p =
2

1 + S

�2S

�t2 +
2�S − 1��2 + ��S − 1��

�1 + S�2 , �7�

where we have normalized the space and time by �2,10�
L0= �R0H0 /2�1/2 and T0= ��H0R0

2 /h0E�1/2, respectively. Fur-
thermore, we have also normalized the cross section and
speed as S=A /�R0

2 and u=vz /c0 where the linear-wave
speed is c0=L0 /T0= �h0E /2�R0�1/2. The normalized pressure
perturbation is p= �P− Pe� / P0, where P0=h0E /2R0. For fu-
ture �numerical� convenience, we note that the time deriva-
tive in Eq. �7� can be eliminated with the help of Eqs. �5� and
�6�, so that the pressure can be written in an alternative form
as

p −
2
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�S
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�2�Su2�
�x2 +

2�S − 1��2 + ��S − 1��
�S + 1�2 ,

�8�

which gives p implicitly as a solution of the linear ordinary
differential equation with appropriate boundary conditions.

Assuming that all quantities depend only on �=x−v0t,
we have from Eqs. �5� and �6� −v0S+Su=−v0 and
−v0u+u2 /2=−p, where we have used the boundary condi-
tions S=1 and u= p=0 at ���=�. Eliminating u from Eqs. �5�
and �6�, we have p=v0

2�S2−1� /2S. The latter is inserted into
Eq. �7� to obtain

d2S

d�2 +
�S − 1��2 + ��S − 1��

v0
2�S + 1�

−
�S + 1�2�S − 1�

4S2 = 0. �9�

Multiplying Eq. �9� by dS /d�, we can integrate the resultant
equation once with respect to � to obtain the Hamiltonian

H =
1

2
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+ 	�S� = 0, �10�

where the classical �Sagdeev� potential �13� for our purposes
reads
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Localized solitary pulse solutions are allowed if 	=d	 /dS
=0 at S=1 and 	=0 and d	 /dS�0 at S=S0
1; the maxi-
mum value of S will then be S=S0 at the peak of the solitary
pulse.

In Fig. 1, we have plotted the Sagdeev potential as a func-
tion of S �upper panel� and have integrated Eq. �10� numeri-
cally with respect to � and have plotted the corresponding
profiles of the tube cross section �lower panel� of localized
pulses. Comparing the amplitudes of the solitary pulses, we
notice that larger pulse speeds v0 support larger-amplitude
solitary pulses, while a larger � value leads to a smaller
amplitude of the localized pulse. Next, we turn to numerical
solutions of the original system of equations �5� and �6�,
and where the pressure was obtained from Eq. �8�. The x
derivatives in Eqs. �5�, �6�, and �8� are approximated with
difference approximations and the resulting linear equation
system in Eq. �8� is solved numerically as a boundary value
problem, where the value of p is set to zero at the boundaries
far away from the pulse. The solution is advanced in time
with a fourth-order Runge-Kutta method. First, the initial
condition is taken to be a Gaussian pulse of the form
S=1+0.3 exp�−�x+300�2 /900� and the velocity is initially
set to u=1.2�1−1/S�. The nonlinear parameter was �=2.0 in
the simulation. The numerical results are displayed in Fig. 2
for the tube cross section �upper panels� and velocity �lower
panels�. We see that the initial pulse first self-steepens and
creates a shocklike structure at t=120. At later times, the
shock front begins to break up into oscillations, and the am-
plitudes of localized pulses increase. At t=480, we see that a
few large-amplitude solitary pulses have been created; the
amplitude of the largest solitary pulse is approximately twice
the one of the initial pulse. We note that the largest-
amplitude localized pulse propagates with the highest speed,
which is in agreement with our theoretical result in Fig. 1. In
the experimental observations of the flow velocity and pres-
sure at five points in the ascending aorta to the saphenous
artery in a dog �1,2�, one sees the increase of the amplitude
and decrease of the width of a pressure pulse, and the for-
mation of dicrotic �twice beating� pulses. The measured
parameters for the thoracic aorta were R0=0.5 cm,

FIG. 1. The Sagdeev potential, describing the amplitude of the
blood solitary waves �upper panel�, and the corresponding profile of
the solitary pulses, for different sets of parameters: �=2 and
v0=1.2 �solid lines�, �=2 and v0=1.1 �dashed lines�, and �=2.5
and v0=1.2 �dash-dotted lines�.
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h0 /r0=0.12, and ��1 g/cm2. By comparing the static model
with measurements of the dependence of the pressure
on the radius in the thoracic aorta of a dog �presented by
McDonald �1��, Yomosa �2� estimated Young’s module to
5.37�106 dyn/cm2 and the nonlinear coefficient of elastic-
ity to �=1.95 for this case. The amplitude of the measured
initial pressure pulse was 20 mm Hg, which in our scaled
units corresponds to a pressure with the amplitude pmax
�0.1. In order to compare with the experiment, we have
performed a simulation where we initially have a pulse train
of the form S=1+0.025�1−tanh�−5 cos�2�10−3�x�+2.5��
��1+sin�2�x /50�� and u=1.1�1−1/S�; see the upper panels
of Fig. 3, where we have displayed the initial profiles of the
velocity and pressure. We see that the initially modulated
harmonic wave self-steepens and increases its amplitude as
time advances. In the lower panels �for t=132 and t=198�,
we see the formation of narrow dicrotic pulses similar to the
pressure pulses observed in the experiment �1,2�.

III. SUMMARY

To summarize, we have presented an investigation of the
formation and dynamics of large-amplitude solitary pulses of
an incompressible and inviscid fluid in an elastic tube, such
as blood vessels. We have theoretically demonstrated the de-
pendence of the localized wave amplitude on the speed of
the solitary pulse and on the nonlinear elasticity parameter.
Explicit profiles for the localized excitations are presented.
Furthermore, numerical simulations of the time-dependent

nonlinear hydrodynamic equations reveal the formation of
shock fronts and possible excitations of solitary pulses for a
wide large-amplitude waves. We have also performed a nu-
merical experiment with measured parameters from the tho-
racic aorta of a dog and could observe the formation of nar-
row dicrotic pressure pulses similar to the ones observed
�1,2� in the ascending aorta to the saphenous artery. We
stress that the nonlinear model used here is only valid for
blood vessels with a large diameter �
1.5 cm� so that the
viscosity of the blood can be neglected, while the viscosity
should be included to extend the theory to blood vessels with
smaller diameters.
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